

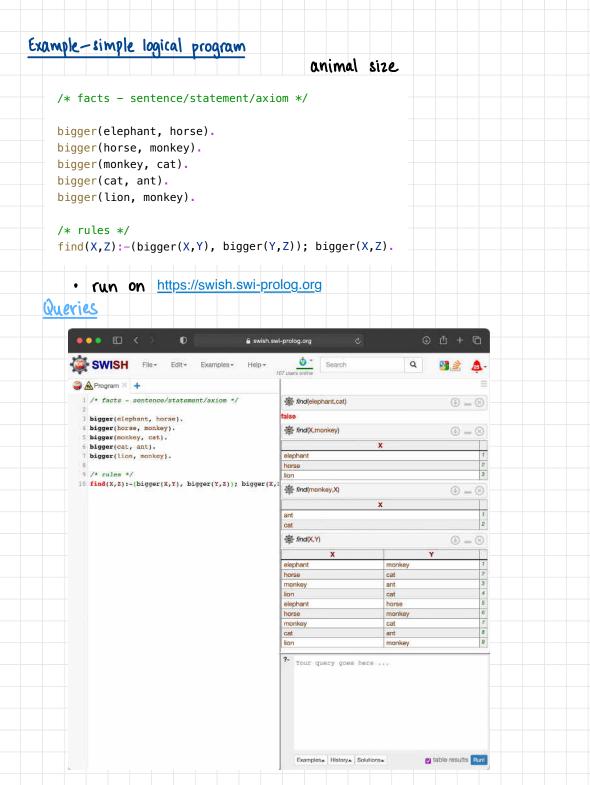
Prolog

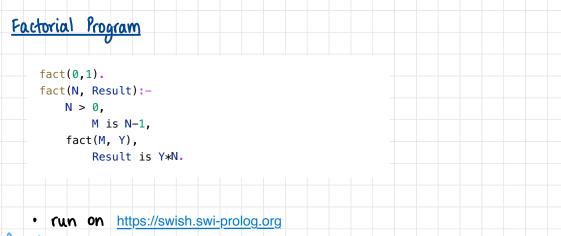
- Basic concepts of logic (less powerful)
 First Order Predicate Logic (FOPL) (more powerful)
 Prolog: Programming Logic
 Based on principles of FOPL

Prolog Basic Constructs

					1	
/	ends	: u	n t	NIIS	тор	

	fact	A. Comma is AND	
knowledge) base	rule	$A:=B_{1}, B_{2}, B_{3}, \dots B_{n}.$	if $B_1, B_2, \dots B_n$ then A $B_1 \land B_2 \land \dots \land B_n \rightarrow A$
		$A := B_1 j B_2 j B_3 j \cdots B_n.$	if B_1 or B_2 or or B_n then A $B_1 \vee B_2 \vee \vee B_n \rightarrow A$
	query	? - B1, B2, · · · Bn	





Queries

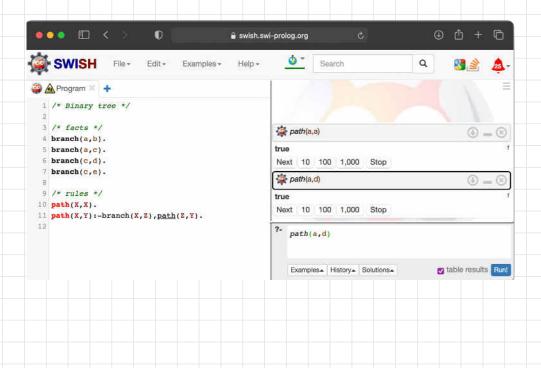
👄 💿 🗉 < 🔹 🕕 🔒 swish.sv	wi-prolog.org C 🛈 🕆 🗋
SWISH File - Edit - Examples - Help -	💇 Search 🔍 🖏 🎄
🚑 🛕 Program 🗶 🕂	♣ X is 2+3
1 /* facts - sentence/statement/axiom */	× 0 - 0
2 fact(0,1).	5 7
4 /* rules */	🔅 fact(0,1)
5 fact(N, Result):-	true 1
$6 \qquad N > 0,$ $7 \qquad M \text{ is } N-1,$	Next 10 100 1,000 Stop
8 fact(M, Y),	
9 Result is Y*N.	Fact(3,6)
	true 1 Next 10 100 1,000 Stop
	In fact(5, Value) (i) = (i)
	Value
	120 1
	false
	(fact(7, Value) () _ ()
	Value
	5040 1
	false
	?- fact(7,Value)
	Examples. History. Solutions. Zable results Runt

Binary Tree

/* Binary tree */
/* facts */
branch(a,b).
branch(a,c).
branch(c,d).
branch(c,e).
/* rules */
path(X,X).
path(X,X).
path(X,Y):-branch(X,Z),path(Z,Y).

• run on https://swish.swi-prolog.org

Queries



Prolog Interpreter

- examines rules in the order in which they have been specified in the database
- database created Knowledge Base : list of facts (predicates) and rules about the domain

<u>Logic</u>

- syntax : design (legal expressions)
- · semantics: working Uruth values of legal expressions)
- · proof system: way of manipulating syntactic expressions to get others

Propositional Logic

Proposition

- · declarative sentence, either true or false
- · 'Joe is happy'
- merge atomic sentences to form complex ones

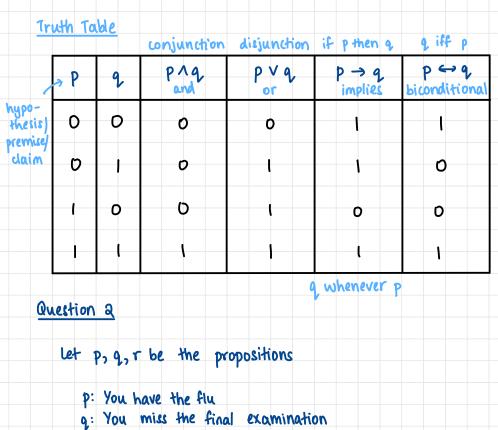
Question 1

Proposition	or not?	proposition	value
	•		

i) Bangalore is the capital of India	yes	false
2) New Delhi is the capital of India	yes	true
3) Do you like coffee?	no	—
4) Liet me a up of coffee	no	-
s) 1+2=3	પુશ્ડ	true
6) 2+3=4	yes	false
7) K+3 =10	no	-
8) x+y = z	no	-

compound Propositions / Complex sentence

- Propositions formed from existing propositions using logical connectives/ operators
- Logical operators
 - * Negation (7) (not)
 - * Conjunction (A) (and)
 - * Disjunction (V) (or)
 - * conditional statement (→) (implies)
 - ★ Biconditional statement (→)



r: You pass the course

Express the propositions as English sentences

- p → q
 if you have the flu, then you miss the final examination
- · 79,63 r

you pass the course if and only if you do not miss the final examination

· q → ¬r

if you miss the final examination, you do not pass the course

· (p-, ¬r) V (q -, ¬r)

if you have the flue then you do not pass the course or if you miss the final examination then you do not pass the course

· (p/q) V (¬q/r)

you have the flu and you miss the final examination or you do not miss the final examination and you pass the course

Question 3

let p and q be propositions

p: You drive over 60 kmph q: You get a speeding ticket

write the following propositions using p, q and logical connectives

(a) You do not drive over 60 kmph

P

(b) You drive over 60 kmph, but you do not get a speeding ticket pへっg

(c) You will get a speeding ticket if you drive over 60 kmph $p \rightarrow q$.

(d) If you do not drive over 60 kmph, then you will not get a speeding ticket ¬p→¬q.

ce> You get a speeding ticket but you do not drive over 60 kmph p 1 7 g

Question 4

Determine the truth values of the following propositions

۹.	2+2=4 iff 1+1=2	true (both true, <>>)
	1+1=2 iff 2+3=4	false
c.	071 iff 271	false
d.	if 1+1=2 then 2+2=5	false Cp is true, q is false
e.	if 1+1=3 then 2+2=4	true (pis false, q is X)
f.	if 1+1 = 3 then 2+2 = 5	true
g.	if 2+2=4 then 1+2=3	true
h.	1+1=3 iff monkeys can fly	true
i.	if monkeys can fly then 1+1=3	true
j.	if It1=3 then unicorns exist	true
k.	if 1+1=3 then dogs can fly	true
l.	if 1+1 = 2 then dogs can fly	false

Syntax & Semantics of PL

ambiguous grammar

Sentence —> AtomicSentence | Complex Sentence Atomic Sentence -> True | False | P| O, | R |... Complex Sentence -> Csentence) [Sentence] | 7 Sentence | Sentence Sentence | Sentence Sentence | Sentence Sentence | Sentence Sentence

Operator Precedence: \neg , \land , \lor , \Rightarrow , \iff

takes care of ambiguity

semanticy

Based on truth value of the sentences. Meaning of the sentence is a function of the meaning of its parts.

Tautology

- Compound proposition that is always true no matter what the truth values of the propositions that occur in it
- Example: $(p \rightarrow q) \land (q \rightarrow p) \iff (p \leftrightarrow q)$

contradiction

· Compound proposition that is always false no matter what the truth values of the propositions that occur in it

• Example:
$$\neg(p \rightarrow q) \land \neg(p \land \neg q)$$

00, 11

Logical Equivalence

- Compound propositions p & q are logically equivalent if p ←> q is a tautology
- The notation $p \equiv q$, denotes that p and q are logically equivalent
- Compound propositions that have the same truth values in all possible cases are called logically equivalent
- Example: $(p \rightarrow q) \land (q \rightarrow p) \equiv (p \leftrightarrow q)$
- The symbol '≡' is not a logical connective. Hence p≡q is not

 a compound proposition and it simply means p⇔q is a tautology.

Question 5

Show that $p \rightarrow q \equiv (\neg p \lor q)$

p	q,	p→q	٦P	γPVq,	(p→q) ←> (7p Vq)
0	0.		-		
D	I	1	1	1	l l
1	ο	0	0	0	١
(1	1	0	1	

Laws of Logic

Equivalence	Name of Identity
$p \land T \equiv p$ $p \lor F \equiv p$	Identity Laws
p∧F≡F p∨T≡T	Domination Laws
p∧p≡p p∨p ≈P	Idempotent Laws
$\neg(\neg p) \equiv p$	Double Negation Law
$p Vq \equiv q V p$ $p Aq \equiv q A p$	Double Negation Law Commutative Laws
$(p^{A}q) \wedge r \equiv p^{A}(q^{A}r)$ $(p \vee q) \vee r \equiv p \vee (q \vee r)$	Associative Laws
pv(q∧r) = (p∧q) v (p∧r) p∧ (q.vr) = (pvq) ∧ (pVr)	Distribution Laws
7(p ~ q) = 7 p ~ 7 q 7 (p ~ q) = 7 p ~ 7 q	DeMorgan's Laws
$p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv p$	Absorption Laws
р^ 7р ≡ F р V 1р ≡T	Negation Laws

Question 6

Prove Using laws of logic

1.
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

 $p \rightarrow q \equiv \neg p \lor q \quad * \text{ important}$
 $\neg (p \rightarrow q) \equiv \neg (\neg p \lor q)$
 $\neg (p \rightarrow q) \equiv p \land \neg q$ De Morgan's

a. $p \land (p \rightarrow q) \equiv p \land q$ $p \land (\neg p \lor q) \equiv p \land q$ $(p \land \neg p) \lor p \land q \equiv p \land q$ $p \land q \equiv p \land q$

3. $\neg (p \vee (\neg p \land q)) \equiv \neg (p \vee q)$ $\neg (pv_{1}) \land (pv_{2}) \equiv \neg (pv_{2})$ $\neg (pv_{2}) \equiv \neg (pv_{2})$

Question 1

Prove the following expressions are tautologies

 $I. (p \land q) \rightarrow (p \lor q)$

$$((p \land q) \rightarrow (p \lor q)) \longleftrightarrow T$$
$$\neg (p \land q) \lor (p \lor q) \equiv T$$
$$\neg p \lor \neg q \lor p \lor q \equiv T$$
$$(\neg p \lor p) \lor (\neg q \lor q) \equiv T$$
$$T \lor T \equiv T$$
$$T \equiv T$$

2. $(p \land q) \rightarrow (p \rightarrow q)$ $(p \land q) \rightarrow (p \rightarrow q) \equiv T$ $(p \land q) \rightarrow (\tau p \lor q) \equiv T$ $\neg (p \land q) \lor (\tau p \lor q) \equiv T$ $\neg p \lor \neg q \lor \tau p \lor q \equiv T$ $\neg q \lor q \lor \neg p \equiv T$ $\neg q \lor q \lor \neg p \equiv T$ $T \lor \neg p \equiv T$ $T \equiv T$

Logical Entailment

- Describes the relationship between statements that hold true when one statement logically follows from one or more statements
- x = β premises conclusion
- $P_1 \land P_2 \land \dots \land P_n \rightarrow q$ is called a logical entailment or a valid argument.
- · It must be a tautology
- The sentence q logically follows from $(p_1 \land p_2 \land ... \land p_n)$ which is another sentence
- · Conclusion is entailed by the premises

Mathematically

- · Model Checking Ctruth table)
- · Rules of Inference (Theorem Proving)

<u>Rules of Inference</u>

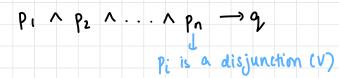
- Well-known argument forms to simplify a complex argument form at hand
- well-known argument forms called Rules of Inference

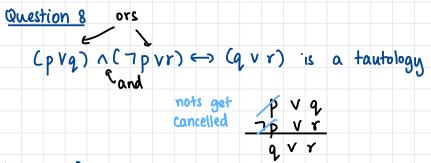
Rules

5	<u>ules</u>	no need to memorise	(geeksforgeeks)	
[Rule of Inference	Tautology	Name	
also imp;	$\frac{\underset{p \to q}{p \to q}}{\therefore q}$	$(p \land (p \to q)) \to q$	Modus Ponens	
erived	$\frac{\stackrel{\neg q}{p \rightarrow q}}{\therefore \neg p}$	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus Tollens	
	$\frac{\substack{\mathbf{p} \to q}{\mathbf{q} \to r}}{\therefore p \to r}$	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$	Hypothetical syllogism	
	$\frac{\stackrel{\neg p}{\underset{\therefore q}{\mathbb{P}} \lor q}}{\cdot \cdot q}$	$(\neg p \land (p \lor q)) \to q$	Disjunctive Syllogism	
	$rac{\mathrm{p}}{\therefore (p \lor q)}$	$\mathrm{p}{ ightarrow}\left(p\lor q ight)$	Addition	
	$\frac{(\mathbf{p} \land q) \to r}{\therefore p \to (q \to r)}$	$((p \land q) \to r) \to (p \to (q \to r))$	Exportation	
imp	$\frac{p \lor q}{\neg p \lor r}$	$((p \lor q) \land (\neg p \lor r)) \to q \lor r$	Magial rule Resolution	
			(can derive all others	

Proof by Resolution

- Most modern automated rule provers use proof by resolution technique
- · It is an Λ of Vs
- Each premise in the form of disjunction cshould be in CNF or conjunctive Normal Form)





Question 9

p ^ (¬p Vr) r is a tautology

Conjunctive Normal Form (CNF)

- Open up implications to get ORs (p→q c→ ¬p v q)
 Get rid of double negatives
- · Convert AV (BAC) to (AVB) A (AVC) (distributivity)

Question lo

Convert A -> (BAC) to CNF

- $= \neg A \lor (B \land C)$
- $= (\neg A V B) \land (\neg A V C)$

Resolution

74 V B 74 V C 74 V B V C

Modus Ponens and Modus Tollens

- · Special cases of Resolution Rule
- * Modus Ponens
 - $p \rightarrow q] if p \rightarrow q & p \rightarrow q \equiv \neg p \lor q$ $p \rightarrow q] if p \rightarrow q & p, \qquad \neg p \lor q$ $q is true \qquad \neg p \lor q$ q = q

* Modus Tollens

Question 11

Prove	that	conclusio	on logica	illy en	tails fro	m the	premise
	Premi	ses					
	PVC)	7V 5Pv 531	<u>c</u> s			
	p>	R	5PV	R			
	PVC P→ Q→	R	501	IR			
			R				
	Condu	sim					
	R						

Question 12

Prove that conclusion logically entails from the premise

Premises	
P > &	TPVB
R→S	TRVS

condusim (PVR)→(QVS)

negate the conclusion

 $= \Gamma \left(\Gamma \left(PVR \right) V \left(QVS \right) \right)$ = $\left(PVR \right) \wedge \Gamma \left(QVS \right)$ = $\left(PVR \right) \wedge \left(\Gamma Q \wedge \Gamma S \right)$

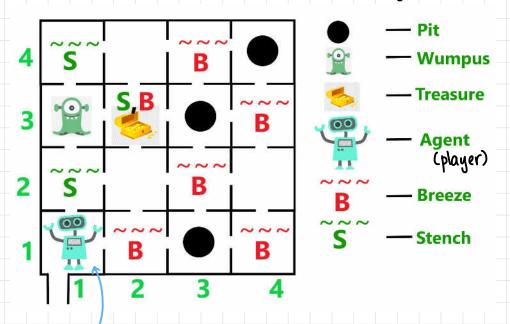
Resolve premise and r-conclusion

FPVS				
TRVS	.	ondusion	follows -	the premise
7VR TS		(AATA	should be	false)
r &				
<u>r/s</u>				
0 = false				

WUMPUS WORLD

- Model of game: certain aspects immutable
- Wumpus : demon
- Artificial Intelligence
- 4x4 grid-world

geeksforgeeks



starts at (1,1)

- As the player progresses in the game, they gain more information about the world (adds to knowledge)
- · Breeze adjacent to pits (not diagonal)
- · Game ends if player (agent) enters pit or meets Wumpus

- · Player cannot see all squares Clike minesweeper)
- · Player can feel a breeze; tells them that pit is near
- · Player can feel a stench; tells them that Wumpus is near
- · Goal: find safest path and exit
- Simulator: <u>https://thiagodnf.github.io/wumpus-world-simulator/</u>

Knowledge-Based Agent

- Software that gathers information about an environment and takes actions based on that (player in a game)
- It could be a robot, a web shopping program, traffic control system etc.
- Knowlege-based agent composed of two parts: knowledge base and inference system
 initial facts

percepts ((1,1) is safe)

(breeze, stench, gold)

· Logical entailment

Knowlege Base

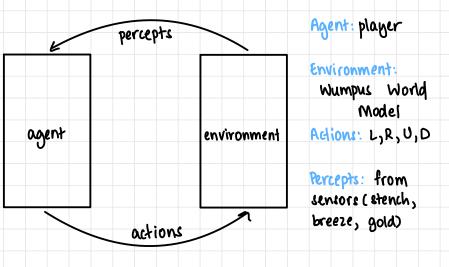
- Knowledge base is a collection of sentences (facts about the world)
- Sentences are expressed in a knowledge representation language/ declarational language (Propositional Logic, First Order Predicate Logic)
- Lots of work to create a sentence for each square wrt breeze, stench, Wumpus, pit (Propositional Logic)
- Cannot generalise using Propositional Logic Ccannot represent patterns)

Inference System

- · Deriving new sentences from old
- · Add sentences to knowledge base
- · Sentence: proposition about the world
- Inference system applies logical rules to the knowledge base to deduce new information Clogical entailment)
- Inference system generates new facts so that an agent can update the kB.

Objective

- See how knowledge-based agent can represent the world in which it operates (KB) and deduce what actions it should take.
- · Use Propositional Logic as representational logic



Operations Performed by KB-Agent

- · Input from environment (to kB)
- · Asks kB what action to perform
- · Output (performs action)

World Model

- Action space (actuators)
 Percept space (sensors)
- Environment

Action Space (Actuators)

- Move forward
- Turn left/right by 90°
 Grab (gold)
- · shoot Cin a straight line)

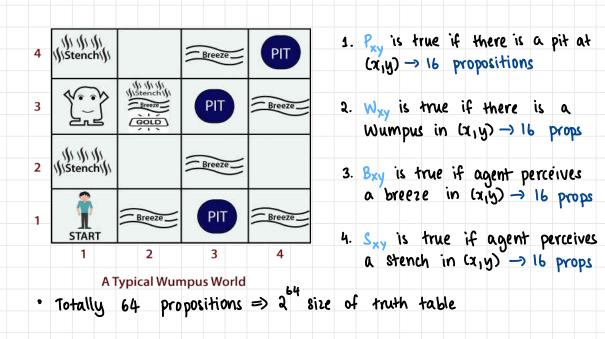
Percept Space (Sensors)

- · cells adjacent to a cell that contains wumpus (not diagonally) give out a stench that the Agent can perceive
- · Cells adjacent to a cell that contains a pit (not diagonally) give out a breeze that the Agent can perceive
- · cells containing gold glitter that the Agent can perceive
- · When Agent walks into a wall, it perceives a bump

Environment

- · 4x4 Grid of rooms (could be any size)
- Agent always starts in the (1,1) cell while facing to the right
- Locations of gold and Wumpus are chosen randomly with a uniform distribution (except (1,1))
- Any cell can be a pit (except (1,17)) with a probability of 0.2
- · Game ends when Agent dies or exists successfully
- · Points are awarded each time gold is obtained

The Wumpus World Knowlege Base



Aspects of the Wumpus World

General Aspects - Immutable (Applies to all models) - facts known

Proposition	Meaning				
R ₁ : ¬ P ₁₁	No pit in (1,1)				
$R_{2}: B_{11} \longleftrightarrow (P_{12} \lor P_{21})$	Breeze in (151) iff pit in adjoining cell (1,2) or (2,1)				
$ \begin{array}{c} \textcircled{0} \\ \end{array}{}$	Breeze in (2,1) iff pit in adjoining cell (1,1), (3,1) or (2,2)				

Aspects Related to a Specific Model - facts gained (figure)

Proposition	Meaning				
	No breeze in (1,1)				
$R_{S} = B_{21}$	Breeze in (2,1)				

• Here, we have written 7 propositions $(2^7 = 128 \text{ entries in truth table})$

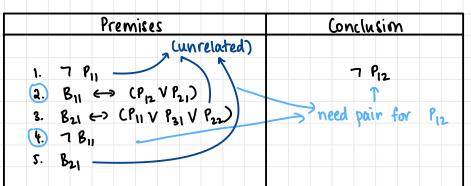
• 128 rows

AND of Ris

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false false	$false \\ false$	false false	false false	$false \\ false$	false false	false true	true true	true true	$true \\ false$	true true	false false	false false
:	:	:	:	:	:	:	:	\vdots	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	$\underbrace{\frac{true}{true}}_{true}$
false	true	false	false	false	true	false	true	true	true	true	true	
false	true	false	false	false	true	true	true	true	true	true	true	
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false	true	true	false	true	false

- · If one or more rows are true, KB is said to be satisfiable
- · Every row is a model
- · If KB is true, what can be entailed?
- · KB = & (& logically follows)
- KB→x is a tautology
- Can entail no breeze (1,1), breeze in (2,1), no pit in (1,1), (1,2)
 or (2,1) (infer)
- · Called model checking; inefficient

Proof By Resolution KB = 7P12



Steps

1. CNF

2. Negate conclusion $\longrightarrow P_{12}$

3. Resolution rules until false / stuck

Prew	nises		Conclusion
1. B ₁₁ ←→ (P		≡ (B ₁₁ → (P ₁₂ (¬ B ₁₁ ∨ P ₁₂ ∨ (¬ B ₁₁ ∨ P ₁₂ ∨ ($\begin{array}{c} \bullet \text{(NF} \\ V P_{21}) \land ((P_{12} \lor P_{21}) \rightarrow B_{11}) \\ P_{21} \land (\neg (P_{12} \lor P_{21}) \lor B_{11}) \\ P_{21} \land ((\neg P_{12} \land \neg P_{21}) \lor B_{11}) \\ \uparrow (\neg P_{12} \lor B_{11}) \land (\neg P_{21} \lor B_{11}) \\ \end{array}$
2. 7 Bu		7 Bij	
Resolve		V 912 V 921	1. ÚS & WS
	(in) 7, 7 (in) 7, 9 (iv) 7	i V Bii	2. order does not matter
	(v) <u>(</u>	2	ion logically follows from premise

Limitations of Propositional Logic

- · Cannot capture patterns
- Eq: we have to write separate rules about breeze and pits for every cell even though the rules convey the same information
- A breeze exists in cell (x,y) iff there is a pit in adjoining cells (x,y+1), (x,y-1), (x-1,y), (x+1,y)
- · Can overcome using First Order Predicate Logic (FOPL)

Propositional Logic (PL)	First Order Predicate Logic (FOPL)
Declarative Language	Declarative Language; extention to PL
Used to represent logic in simple environments	Used to represent logic in complex environments quantifiers
Lacks expressive power to concisely describe an environment	Can represent rules generally (no need for separate rules for each cell)
Assumes world contains facts	Assumes world contains objects, relations and functions
Facts either hold or do not hold	Relations between objects either hold or do not hold

FOPL- Describing a Model

i) set of objects - Domain of the model

2) Relations - specify how objects are related, whether relationship holds or not

- Input : Object(s) or Function(s)
- · Output : true or false

3) Functions - special case of relation where object is related to exactly one object. Must be a total function C defined for all valid inputs)

- Input: Object(s)
- Output: Object

Example

Relation: mother (Gunjan, Ravi) Function: mother (Ravi) returns Gunjan

Basic Elements of FOPL Syntax

Constant symbols (Objects)	1,2, A, John, Mumbai, Chair
Predicate symbols (relations)	
Function symbols	sqrt, multiply
Variables	λ, y, z, a, b
Term	Constant/function symbol or variable
Equality	= / 0
Connectives	$\neg, \lor, \land, \rightarrow, \leftrightarrow$
Quantifier	₩, Э

Quantifiers in FOPL

- Allows to make general assertions using quantifiers
- Universal quantifier \forall for all, for each, for every. Eq: $\forall x =$ for each x
- Existential quantifier 3 for some, at least one.
 Eg: 3x = for some x

Properties of Quantifiers

- Yz Yy similar to Yy Yz
- 3x 3y similar to 3y3x
- · 42 3% not similar to 4y 3x
- Main connector for V is implication —>
 Eq: Let the domain be all animals

D(x): x is a dog x is an animalM(x): x is a mammal<math>C(x): x is cute

"All dogs are animals"

i) $\forall x (D(x) \rightarrow M(x)) \checkmark \leftarrow best connective for every x, if x is a dog then x is a mammal$

(ii) $\forall x (D(x) \land M(x)) X$

for every x, x is a dog and x is a mammal

- Main quantifier for 3 is and Eq: Let the domain be all animals
 - D(x): x is a dog x is an animal M(x): x is a mammalC(x): x is cute
 - " some dogs are cute"
 - i) $\forall x (D(x) \rightarrow C(x)) \times$ for some x, if x is a dog then x is cute
 - (ii) $\forall x (D(x) \land C(x)) \checkmark \leftarrow best connective for some x, x is a dog and x is cute$

Free and Bound Variables

- 1. Free Variable if the variable occurs outside the surpe of a quantifier
 - eg: $\forall x \exists (y) [P(x,y,z)]$ can take any value
- 2. Bound variable if the variable occurs inside the scope of a quantifier
 - eg: Vz [A(z) B(y)]
- Variables can take values in a domain and can only be used together with quantifiers

$(\forall x \forall y)$ • eq: $\forall x, y$ brother $(x, y) \rightarrow$ sibling (x, y)

for all $x_1 y$ if x is a brother of y then x is a sibling of y

· eq: fx 2*5+x=18

there exists an x such that 2*5+x =18

Term

- · constant symbols (objects)
- Function symbols
- Variables
- term equality (=)

Atomic Sentence

- · Most basic sentences in first-order logic
- Predicate symbol followed by a parenthesis with a sequence of terms
- · Prolog: fact
 - eg: brothers (Ravi, Ajay). bigger (elephant , horse).
- · Functions do not state facts and form no sentence

Complex Sentence

- Complex sentences are made by combining atomic sentences using connectives (¬, √, ∧, →), ⇐>)
- Eq: find (x,z): bigger (x,y), bigger (y,z); bigger (x,z)

Grammar

 $Sentence \rightarrow AtomicSentence \mid ComplexSentence$ $AtomicSentence \rightarrow Predicate \mid Predicate(Term,...) \mid Term = Term$ ComplexSentence \rightarrow (Sentence) | [Sentence] \neg Sentence Sentence \land Sentence Sentence \lor Sentence Sentence \Rightarrow Sentence Sentence \Leftrightarrow Sentence Quantifier Variable, ... Sentence $Term \rightarrow Function(Term, ...)$ | Constant -> map to objects Variable Quantifier $\rightarrow \forall \mid \exists$ Constant $\rightarrow A \mid X_1 \mid John \mid \cdots$ fact $Variable \rightarrow a \mid x \mid s \mid \cdots$ $Predicate \rightarrow True \mid False \mid After \mid Loves \mid Raining \mid \cdots$ Function \rightarrow Mother | LeftLeg | ··· OPERATOR PRECEDENCE : \neg , =, \land , \lor , \Rightarrow , \Leftrightarrow (brackets first)

Number of Possible Words/Models

- In propositional logic, if there are 100 propositions/symbols,
 there are 2¹⁰⁰ worlds (models) each row
- In FOPL, no. of models depend on no. of objects and mapping of constant symbols to objects.
- · Predicates are true or false

Question 13

Suppose that we have <u>five</u> constants, <u>no</u> functions and <u>one</u> predicate that takes in one argument. How many possible worlds are there?

Suppose the constants are v, w, x, y, z

Predicates can take in : P(v), P(w), P(n), P(y), P(z) T F T F T F T F T F T F T F

Five possible arguments

Size of truth table = 2^5 (no. of models)

Model	P(V)	P(W)	P(X)	P(Y)	P(Z)
1	false	false	false	false	false
2	true	false	false	false	false
A.T.A.N					
					•••
2 ⁵ =32	true	true	true	true	true

Question 14

Suppose that we have <u>five</u> constants, <u>no</u> functions and <u>three</u> predicates that take in <u>two</u> arguments and <u>one</u> that takes in <u>one</u>. How many possible worlds are there?

Five constants (v,w,x,y,z)

 $P_1(any 2), P_2(any 2), P_3(any 2), P_4(any 1)$ S^2 $S^$

25x3+5 = 80 possibilities

.: 2⁸⁰ possible worlds

Model checking is too inefficient

Question 15

For the Wumpus World, to say that "pits cause breezes in adj squares" using propositional logic, 16 rules are required.

 $B_{12} \longrightarrow (P_{11} \vee P_{22} \vee P_{13})$

How can we say the same thing in FOPL?

Objects: Pits, Squares Relations: Breeze, adjacent

∀ x₁, y₁, Breeze (x₁, y₁) ↔ (∃ x₂, y₂) Pit (x₂, y₂) AND Adjacent (x₁, y₁, x₂, y₂)

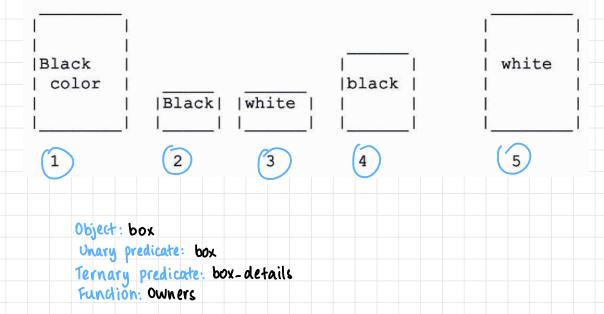
for every (x, y,) there is a breeze iff there is a pit in an adjacent square

Knowledge Representation using FOPL

- Box solver
- Kinship
- · Mathematical sets

Box Solver Problem

- There are 5 boxes
- Each of Ann, Bill, Charlie, Don and Eric own a box but we don't know which
- · Try to find owners if you know that
 - i) Ann & Bill same colour
 - 2) Don & Eric same colour
 - 3) Charlie & Don Same size
 - 4) Eric's is smaller than Bill's



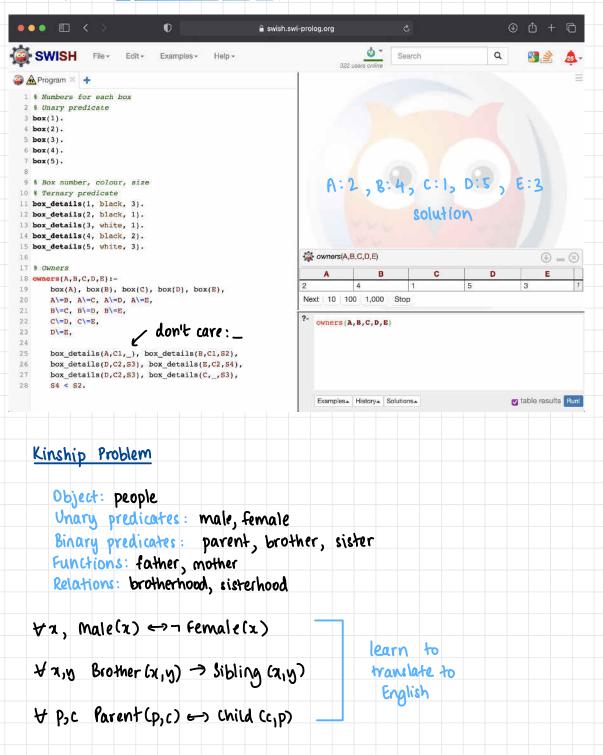
FOPL Representation

3 A, B, C, D, E, C1, C2, C3, S1, S2, S3, S4 $(A \neq B \neq C \neq D \neq C) \land$ box-details (A, c1, S1) \land box-details (B, c1, S2) \land % Ann & Bill same colours box-details (D, c2, S3) \land box-details (E, c2, S4) \land % Don & Eric same colours box-details (D, c2, S3) \land box-details (C, c3, S3) \land Don & Charlie same size S4 < S2 \checkmark Eric smaller than Bill

Prolog

```
% Numbers for each box
% Unary predicate
box(1).
box(2).
box(3).
box(4).
box(5).
% Box number, colour, size
% Ternary predicate
box_details(1, black, 3).
box_details(2, black, 1).
box details(3, white, 1).
box_details(4, black, 2).
box details(5, white, 3).
% Owners
owners(A,B,C,D,E):-
    box(A), box(B), box(C), box(D), box(E),
    A = B, A = C, A = D, A = E,
    B = C, B = D, B = E,
    C = D, C = E,
    D\=E,
    box_details(A,C1,_), box_details(B,C1,S2),
    box details(D,C2,S3), box details(E,C2,S4),
    box_details(D,C2,S3), box_details(C,_,S3),
    S4 < S2.
```

run on https://swish.swi-prolog.org



Mathematical Set Representation

constant: empty set (s = i]) Predicate: member and subset Function: intersection and unim O/P:sets

Equal sets $\forall s_1, s_2 (s_1 = s_2) \iff subset(s_1, s_2) \land subset(s_2, s_3)$

x belongs to intersection $\forall x_1 s_1, s_2 \ x \in (s_1 \cap s_2) \hookrightarrow x \in s_1 \land x \in s_2$

x belongs to union $\forall x, s_1, s_2 x \in (s_1 \cup s_2) \iff x \in s_1 \vee x \in s_2$

Whole Numbers

Constant: O Function: Successor Predicate: Whole Num

· Whole Num Loy.

O succeeds nothing

 $\forall x \quad successor(x) \neq 0$

inequality of enccessors of unique numbers $\forall m,n \quad m \neq n \implies successor(m) \neq successor(n)$

0+n=n

∀m WholeNum(m) => +(0,m)=m

Addition in terms of successor

Hm,n WholeNum(m) ∧ WholeNum(n) => + (s(m),n)= s(+(m,n))

successor of WN is WN

∀x Whole Num(x) => Whole Num(S(x))

Knowledge Engineering in FOPL

Process of constructing a knowledge

identify the task

assemble relevant knowledge

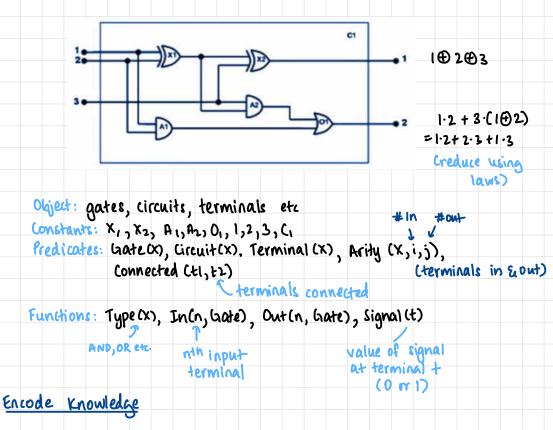
decide vocabulary func, pred

encode general Knowlege of domain

J

pose queries and get answers

define knowledge base One Bit Full Adder



OR is 1 if input is 1 (at least 2)

∀ g Type(g) = OR ⇒ Signal (Out(1,g)) ⇒ ∃ n Signal (In (n,g))=1

AND is 0 if any input 0

¥g Type(g) = MND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0

xor is 1 if inputs are different

∀g Type(g) = xor => Signal (Out(1,g)) =| => Signal(In(1,g)) ≠ Signal (In(2,g))

